Clinical, electrophysiological, and molecular genetic studies in a new family with paramyotonia congenita.

نویسندگان

  • N P Davies
  • L H Eunson
  • R P Gregory
  • K R Mills
  • P J Morrison
  • M G Hanna
چکیده

OBJECTIVES To characterise the clinical and electrophysiological features and to determine the molecular genetic basis of pure paramyotonia congenita in a previously unreported large Irish kindred. METHODS Clinical and neurophysiological examination was performed on three of the five affected family members. Five unaffected and three affected members of the family were available for genetic testing. Direct sequence analysis of the SCN4A gene on chromosome 17q, was performed on the proband's DNA. Restriction fragment length polymorphism (RFLP) analysis was used to screen other family members and control chromosomes for the SCN4A mutation identified. RESULTS Each affected member had clinical and examination features consistent with pure paramyotonia congenita. Electrophysiological studies disclosed a 78% drop in compound muscle action potential (CMAP) amplitude on cooling to 20 degrees C. DNA sequence analysis identified a heterozygous point mutation G4367A in exon 24 of the SCN4A gene which segregated with paramyotonia and was absent in 200 control chromosomes. The mutation is predicted to result in a radical amino acid substitution at a highly conserved position within the voltage sensing fourth transmembrane segment of the fourth repeated domain of the sodium channel. CONCLUSIONS The G4367A mutation is likely to be pathogenic and it associates with a pure paramyotonia phenotype. In keeping with other paramyotonia mutations in this region of the skeletal muscle sodium channel, it is predicted that this mutation will impair voltage sensing or sodium channel fast inactivation in a temperature dependent fashion. This study provides further evidence that exon 24 in SCN4A is a hot spot for paramyotonia mutations and this has implications for a DNA based diagnostic service.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clinical, electrophysiological and genetic features of a large Australian family with paramyotonia congenita.

A 32-year-old woman with a 4-year history of multiple sclerosis presented with persistent clawing of the right hand. History revealed that she and five family members had lifelong symptoms of paradoxical myotonia (impaired relaxation of muscles following muscle contraction), exacerbated by cold. The family was diagnosed with paramyotonia congenita, based on neurophysiological and genetic studie...

متن کامل

A Korean family with Arg1448Cys mutation of SCN4A channel causing paramyotonia congenita: electrophysiologic, histopathologic, and molecular genetic studies.

A family with paramyotonia congenita (PC) is presented. At least 10 family members were affected in an autosomal dominant inheritance pattern. The proband had cold-sensitive muscle stiffness, paradoxical myotonia, and intermittent muscle weakness since childhood. The serum level of creatine kinase was mildly elevated and short exercise test with cooling revealed a drastic reduction of compound ...

متن کامل

Phenotypic variation of Val1589Met mutation in a four-generation Chinese pedigree with mild paramyotonia congenitia: case report.

Four generations of a Chinese family with a mild form of paramyotonia congenital was characterized in phenotype and genotype. For each member, clinical history, physical examination, laboratory tests, electrophysiological and gene analyses were recorded and carried out. A potassium loading, exercise and cold provocation were further tested to diagnose the clinical differentiation. All members s...

متن کامل

Myotonia fluctuans.

Autosomal-dominantly inherited nondystrophic myotonic disorders are an interesting group of muscle diseases that provide considerable opportunity for future molecular genetic studies to identify the genes responsible for specific membrane functions. A family with such a myotonic disorder is described with features that are distinctly different from myotonia congenita and paramyotonia congenita....

متن کامل

Hyperkalemic periodic paralysis and paramyotonia congenita caused by a de novo mutation in the SCN4A gene

Familial hyperkalemic periodic paralysis is an autosomal-dominant channelopathy characterized by reversible paralysis associated with episodic hyperkalemia. Mutations in the skeletal muscle voltage-gated sodium channel gene (SCN4A) have been reported to be responsible for this disorder. Paramyotonia congenita is also caused by mutations in the SCN4A gene. Here, we report the case of a 17-year-o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurology, neurosurgery, and psychiatry

دوره 68 4  شماره 

صفحات  -

تاریخ انتشار 2000